3.4.85 \(\int \frac {\cos (c+d x)}{a+b \sin ^3(c+d x)} \, dx\) [385]

3.4.85.1 Optimal result
3.4.85.2 Mathematica [A] (verified)
3.4.85.3 Rubi [A] (verified)
3.4.85.4 Maple [C] (verified)
3.4.85.5 Fricas [A] (verification not implemented)
3.4.85.6 Sympy [A] (verification not implemented)
3.4.85.7 Maxima [A] (verification not implemented)
3.4.85.8 Giac [A] (verification not implemented)
3.4.85.9 Mupad [B] (verification not implemented)

3.4.85.1 Optimal result

Integrand size = 21, antiderivative size = 144 \[ \int \frac {\cos (c+d x)}{a+b \sin ^3(c+d x)} \, dx=-\frac {\arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} \sin (c+d x)}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{2/3} \sqrt [3]{b} d}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b} d}-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} \sin (c+d x)+b^{2/3} \sin ^2(c+d x)\right )}{6 a^{2/3} \sqrt [3]{b} d} \]

output
1/3*ln(a^(1/3)+b^(1/3)*sin(d*x+c))/a^(2/3)/b^(1/3)/d-1/6*ln(a^(2/3)-a^(1/3 
)*b^(1/3)*sin(d*x+c)+b^(2/3)*sin(d*x+c)^2)/a^(2/3)/b^(1/3)/d-1/3*arctan(1/ 
3*(a^(1/3)-2*b^(1/3)*sin(d*x+c))/a^(1/3)*3^(1/2))/a^(2/3)/b^(1/3)/d*3^(1/2 
)
 
3.4.85.2 Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.81 \[ \int \frac {\cos (c+d x)}{a+b \sin ^3(c+d x)} \, dx=-\frac {2 \sqrt {3} \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} \sin (c+d x)}{\sqrt {3} \sqrt [3]{a}}\right )-2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)\right )+\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} \sin (c+d x)+b^{2/3} \sin ^2(c+d x)\right )}{6 a^{2/3} \sqrt [3]{b} d} \]

input
Integrate[Cos[c + d*x]/(a + b*Sin[c + d*x]^3),x]
 
output
-1/6*(2*Sqrt[3]*ArcTan[(a^(1/3) - 2*b^(1/3)*Sin[c + d*x])/(Sqrt[3]*a^(1/3) 
)] - 2*Log[a^(1/3) + b^(1/3)*Sin[c + d*x]] + Log[a^(2/3) - a^(1/3)*b^(1/3) 
*Sin[c + d*x] + b^(2/3)*Sin[c + d*x]^2])/(a^(2/3)*b^(1/3)*d)
 
3.4.85.3 Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.94, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {3042, 3702, 750, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos (c+d x)}{a+b \sin ^3(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)}{a+b \sin (c+d x)^3}dx\)

\(\Big \downarrow \) 3702

\(\displaystyle \frac {\int \frac {1}{b \sin ^3(c+d x)+a}d\sin (c+d x)}{d}\)

\(\Big \downarrow \) 750

\(\displaystyle \frac {\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} \sin (c+d x)}{b^{2/3} \sin ^2(c+d x)-\sqrt [3]{a} \sqrt [3]{b} \sin (c+d x)+a^{2/3}}d\sin (c+d x)}{3 a^{2/3}}+\frac {\int \frac {1}{\sqrt [3]{b} \sin (c+d x)+\sqrt [3]{a}}d\sin (c+d x)}{3 a^{2/3}}}{d}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} \sin (c+d x)}{b^{2/3} \sin ^2(c+d x)-\sqrt [3]{a} \sqrt [3]{b} \sin (c+d x)+a^{2/3}}d\sin (c+d x)}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b}}}{d}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} \sin ^2(c+d x)-\sqrt [3]{a} \sqrt [3]{b} \sin (c+d x)+a^{2/3}}d\sin (c+d x)-\frac {\int -\frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} \sin (c+d x)\right )}{b^{2/3} \sin ^2(c+d x)-\sqrt [3]{a} \sqrt [3]{b} \sin (c+d x)+a^{2/3}}d\sin (c+d x)}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b}}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} \sin ^2(c+d x)-\sqrt [3]{a} \sqrt [3]{b} \sin (c+d x)+a^{2/3}}d\sin (c+d x)+\frac {\int \frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} \sin (c+d x)\right )}{b^{2/3} \sin ^2(c+d x)-\sqrt [3]{a} \sqrt [3]{b} \sin (c+d x)+a^{2/3}}d\sin (c+d x)}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b}}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} \sin ^2(c+d x)-\sqrt [3]{a} \sqrt [3]{b} \sin (c+d x)+a^{2/3}}d\sin (c+d x)+\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} \sin (c+d x)}{b^{2/3} \sin ^2(c+d x)-\sqrt [3]{a} \sqrt [3]{b} \sin (c+d x)+a^{2/3}}d\sin (c+d x)}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b}}}{d}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} \sin (c+d x)}{b^{2/3} \sin ^2(c+d x)-\sqrt [3]{a} \sqrt [3]{b} \sin (c+d x)+a^{2/3}}d\sin (c+d x)+\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{b} \sin (c+d x)}{\sqrt [3]{a}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{b} \sin (c+d x)}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b}}}{d}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} \sin (c+d x)}{b^{2/3} \sin ^2(c+d x)-\sqrt [3]{a} \sqrt [3]{b} \sin (c+d x)+a^{2/3}}d\sin (c+d x)-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} \sin (c+d x)}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b}}}{d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} \sin (c+d x)+b^{2/3} \sin ^2(c+d x)\right )}{2 \sqrt [3]{b}}-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} \sin (c+d x)}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b}}}{d}\)

input
Int[Cos[c + d*x]/(a + b*Sin[c + d*x]^3),x]
 
output
(Log[a^(1/3) + b^(1/3)*Sin[c + d*x]]/(3*a^(2/3)*b^(1/3)) + (-((Sqrt[3]*Arc 
Tan[(1 - (2*b^(1/3)*Sin[c + d*x])/a^(1/3))/Sqrt[3]])/b^(1/3)) - Log[a^(2/3 
) - a^(1/3)*b^(1/3)*Sin[c + d*x] + b^(2/3)*Sin[c + d*x]^2]/(2*b^(1/3)))/(3 
*a^(2/3)))/d
 

3.4.85.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 750
Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Simp[1/(3*Rt[a, 3]^2)   Int[1/ 
(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]^2)   Int[(2*Rt[a, 3] - 
 Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x] /; 
 FreeQ[{a, b}, x]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3702
Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x 
_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Si 
mp[ff/f   Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^n)^p, x], x, 
 Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 
1)/2] && (EqQ[n, 4] || GtQ[m, 0] || IGtQ[p, 0] || IntegersQ[m, p])
 
3.4.85.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.42 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.33

method result size
risch \(\munderset {\textit {\_R} =\operatorname {RootOf}\left (27 a^{2} b \,d^{3} \textit {\_Z}^{3}-1\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+6 i a d \textit {\_R} \,{\mathrm e}^{i \left (d x +c \right )}-1\right )\) \(48\)
derivativedivides \(\frac {\frac {\ln \left (\sin \left (d x +c \right )+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (\sin ^{2}\left (d x +c \right )-\left (\frac {a}{b}\right )^{\frac {1}{3}} \sin \left (d x +c \right )+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 \sin \left (d x +c \right )}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}}{d}\) \(115\)
default \(\frac {\frac {\ln \left (\sin \left (d x +c \right )+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (\sin ^{2}\left (d x +c \right )-\left (\frac {a}{b}\right )^{\frac {1}{3}} \sin \left (d x +c \right )+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 \sin \left (d x +c \right )}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}}{d}\) \(115\)

input
int(cos(d*x+c)/(a+b*sin(d*x+c)^3),x,method=_RETURNVERBOSE)
 
output
sum(_R*ln(exp(2*I*(d*x+c))+6*I*a*d*_R*exp(I*(d*x+c))-1),_R=RootOf(27*_Z^3* 
a^2*b*d^3-1))
 
3.4.85.5 Fricas [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 401, normalized size of antiderivative = 2.78 \[ \int \frac {\cos (c+d x)}{a+b \sin ^3(c+d x)} \, dx=\left [\frac {3 \, \sqrt {\frac {1}{3}} a b \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \log \left (-\frac {3 \, \left (a^{2} b\right )^{\frac {1}{3}} a \sin \left (d x + c\right ) + a^{2} + 3 \, \sqrt {\frac {1}{3}} {\left (2 \, a b \cos \left (d x + c\right )^{2} - 2 \, a b - \left (a^{2} b\right )^{\frac {2}{3}} \sin \left (d x + c\right ) + \left (a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} + 2 \, {\left (a b \cos \left (d x + c\right )^{2} - a b\right )} \sin \left (d x + c\right )}{{\left (b \cos \left (d x + c\right )^{2} - b\right )} \sin \left (d x + c\right ) - a}\right ) - \left (a^{2} b\right )^{\frac {2}{3}} \log \left (-a b \cos \left (d x + c\right )^{2} + a b - \left (a^{2} b\right )^{\frac {2}{3}} \sin \left (d x + c\right ) + \left (a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b \sin \left (d x + c\right ) + \left (a^{2} b\right )^{\frac {2}{3}}\right )}{6 \, a^{2} b d}, \frac {6 \, \sqrt {\frac {1}{3}} a b \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \arctan \left (\frac {\sqrt {\frac {1}{3}} {\left (2 \, \left (a^{2} b\right )^{\frac {2}{3}} \sin \left (d x + c\right ) - \left (a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}}}{a^{2}}\right ) - \left (a^{2} b\right )^{\frac {2}{3}} \log \left (-a b \cos \left (d x + c\right )^{2} + a b - \left (a^{2} b\right )^{\frac {2}{3}} \sin \left (d x + c\right ) + \left (a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b \sin \left (d x + c\right ) + \left (a^{2} b\right )^{\frac {2}{3}}\right )}{6 \, a^{2} b d}\right ] \]

input
integrate(cos(d*x+c)/(a+b*sin(d*x+c)^3),x, algorithm="fricas")
 
output
[1/6*(3*sqrt(1/3)*a*b*sqrt(-(a^2*b)^(1/3)/b)*log(-(3*(a^2*b)^(1/3)*a*sin(d 
*x + c) + a^2 + 3*sqrt(1/3)*(2*a*b*cos(d*x + c)^2 - 2*a*b - (a^2*b)^(2/3)* 
sin(d*x + c) + (a^2*b)^(1/3)*a)*sqrt(-(a^2*b)^(1/3)/b) + 2*(a*b*cos(d*x + 
c)^2 - a*b)*sin(d*x + c))/((b*cos(d*x + c)^2 - b)*sin(d*x + c) - a)) - (a^ 
2*b)^(2/3)*log(-a*b*cos(d*x + c)^2 + a*b - (a^2*b)^(2/3)*sin(d*x + c) + (a 
^2*b)^(1/3)*a) + 2*(a^2*b)^(2/3)*log(a*b*sin(d*x + c) + (a^2*b)^(2/3)))/(a 
^2*b*d), 1/6*(6*sqrt(1/3)*a*b*sqrt((a^2*b)^(1/3)/b)*arctan(sqrt(1/3)*(2*(a 
^2*b)^(2/3)*sin(d*x + c) - (a^2*b)^(1/3)*a)*sqrt((a^2*b)^(1/3)/b)/a^2) - ( 
a^2*b)^(2/3)*log(-a*b*cos(d*x + c)^2 + a*b - (a^2*b)^(2/3)*sin(d*x + c) + 
(a^2*b)^(1/3)*a) + 2*(a^2*b)^(2/3)*log(a*b*sin(d*x + c) + (a^2*b)^(2/3)))/ 
(a^2*b*d)]
 
3.4.85.6 Sympy [A] (verification not implemented)

Time = 2.62 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.28 \[ \int \frac {\cos (c+d x)}{a+b \sin ^3(c+d x)} \, dx=\begin {cases} \frac {\tilde {\infty } x \cos {\left (c \right )}}{\sin ^{3}{\left (c \right )}} & \text {for}\: a = 0 \wedge b = 0 \wedge d = 0 \\- \frac {1}{2 b d \sin ^{2}{\left (c + d x \right )}} & \text {for}\: a = 0 \\\frac {\sin {\left (c + d x \right )}}{a d} & \text {for}\: b = 0 \\\frac {x \cos {\left (c \right )}}{a + b \sin ^{3}{\left (c \right )}} & \text {for}\: d = 0 \\- \frac {\sqrt [3]{- \frac {a}{b}} \log {\left (- \sqrt [3]{- \frac {a}{b}} + \sin {\left (c + d x \right )} \right )}}{3 a d} + \frac {\sqrt [3]{- \frac {a}{b}} \log {\left (4 \left (- \frac {a}{b}\right )^{\frac {2}{3}} + 4 \sqrt [3]{- \frac {a}{b}} \sin {\left (c + d x \right )} + 4 \sin ^{2}{\left (c + d x \right )} \right )}}{6 a d} + \frac {\sqrt {3} \sqrt [3]{- \frac {a}{b}} \operatorname {atan}{\left (\frac {\sqrt {3}}{3} + \frac {2 \sqrt {3} \sin {\left (c + d x \right )}}{3 \sqrt [3]{- \frac {a}{b}}} \right )}}{3 a d} & \text {otherwise} \end {cases} \]

input
integrate(cos(d*x+c)/(a+b*sin(d*x+c)**3),x)
 
output
Piecewise((zoo*x*cos(c)/sin(c)**3, Eq(a, 0) & Eq(b, 0) & Eq(d, 0)), (-1/(2 
*b*d*sin(c + d*x)**2), Eq(a, 0)), (sin(c + d*x)/(a*d), Eq(b, 0)), (x*cos(c 
)/(a + b*sin(c)**3), Eq(d, 0)), (-(-a/b)**(1/3)*log(-(-a/b)**(1/3) + sin(c 
 + d*x))/(3*a*d) + (-a/b)**(1/3)*log(4*(-a/b)**(2/3) + 4*(-a/b)**(1/3)*sin 
(c + d*x) + 4*sin(c + d*x)**2)/(6*a*d) + sqrt(3)*(-a/b)**(1/3)*atan(sqrt(3 
)/3 + 2*sqrt(3)*sin(c + d*x)/(3*(-a/b)**(1/3)))/(3*a*d), True))
 
3.4.85.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.84 \[ \int \frac {\cos (c+d x)}{a+b \sin ^3(c+d x)} \, dx=\frac {\frac {2 \, \sqrt {3} \arctan \left (-\frac {\sqrt {3} {\left (\left (\frac {a}{b}\right )^{\frac {1}{3}} - 2 \, \sin \left (d x + c\right )\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{b \left (\frac {a}{b}\right )^{\frac {2}{3}}} - \frac {\log \left (\sin \left (d x + c\right )^{2} - \left (\frac {a}{b}\right )^{\frac {1}{3}} \sin \left (d x + c\right ) + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{b \left (\frac {a}{b}\right )^{\frac {2}{3}}} + \frac {2 \, \log \left (\left (\frac {a}{b}\right )^{\frac {1}{3}} + \sin \left (d x + c\right )\right )}{b \left (\frac {a}{b}\right )^{\frac {2}{3}}}}{6 \, d} \]

input
integrate(cos(d*x+c)/(a+b*sin(d*x+c)^3),x, algorithm="maxima")
 
output
1/6*(2*sqrt(3)*arctan(-1/3*sqrt(3)*((a/b)^(1/3) - 2*sin(d*x + c))/(a/b)^(1 
/3))/(b*(a/b)^(2/3)) - log(sin(d*x + c)^2 - (a/b)^(1/3)*sin(d*x + c) + (a/ 
b)^(2/3))/(b*(a/b)^(2/3)) + 2*log((a/b)^(1/3) + sin(d*x + c))/(b*(a/b)^(2/ 
3)))/d
 
3.4.85.8 Giac [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.95 \[ \int \frac {\cos (c+d x)}{a+b \sin ^3(c+d x)} \, dx=-\frac {\frac {2 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | -\left (-\frac {a}{b}\right )^{\frac {1}{3}} + \sin \left (d x + c\right ) \right |}\right )}{a} - \frac {2 \, \sqrt {3} \left (-a b^{2}\right )^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (\left (-\frac {a}{b}\right )^{\frac {1}{3}} + 2 \, \sin \left (d x + c\right )\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{a b} - \frac {\left (-a b^{2}\right )^{\frac {1}{3}} \log \left (\sin \left (d x + c\right )^{2} + \left (-\frac {a}{b}\right )^{\frac {1}{3}} \sin \left (d x + c\right ) + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{a b}}{6 \, d} \]

input
integrate(cos(d*x+c)/(a+b*sin(d*x+c)^3),x, algorithm="giac")
 
output
-1/6*(2*(-a/b)^(1/3)*log(abs(-(-a/b)^(1/3) + sin(d*x + c)))/a - 2*sqrt(3)* 
(-a*b^2)^(1/3)*arctan(1/3*sqrt(3)*((-a/b)^(1/3) + 2*sin(d*x + c))/(-a/b)^( 
1/3))/(a*b) - (-a*b^2)^(1/3)*log(sin(d*x + c)^2 + (-a/b)^(1/3)*sin(d*x + c 
) + (-a/b)^(2/3))/(a*b))/d
 
3.4.85.9 Mupad [B] (verification not implemented)

Time = 14.51 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.85 \[ \int \frac {\cos (c+d x)}{a+b \sin ^3(c+d x)} \, dx=\frac {\ln \left (b^{1/3}\,\sin \left (c+d\,x\right )+a^{1/3}\right )}{3\,a^{2/3}\,b^{1/3}\,d}+\frac {\ln \left (3\,b^2\,\sin \left (c+d\,x\right )+\frac {3\,a^{1/3}\,b^{5/3}\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{2}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,a^{2/3}\,b^{1/3}\,d}-\frac {\ln \left (3\,b^2\,\sin \left (c+d\,x\right )-\frac {3\,a^{1/3}\,b^{5/3}\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{2}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,a^{2/3}\,b^{1/3}\,d} \]

input
int(cos(c + d*x)/(a + b*sin(c + d*x)^3),x)
 
output
log(b^(1/3)*sin(c + d*x) + a^(1/3))/(3*a^(2/3)*b^(1/3)*d) + (log(3*b^2*sin 
(c + d*x) + (3*a^(1/3)*b^(5/3)*(3^(1/2)*1i - 1))/2)*(3^(1/2)*1i - 1))/(6*a 
^(2/3)*b^(1/3)*d) - (log(3*b^2*sin(c + d*x) - (3*a^(1/3)*b^(5/3)*(3^(1/2)* 
1i + 1))/2)*(3^(1/2)*1i + 1))/(6*a^(2/3)*b^(1/3)*d)